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This work presents an improved solution to the problem of determining effective multiprocessor scheduling poll- 
des for real-time repetitive tasks. In order for this approach to be applicable to some task, the probability density 
function of its execution time, a value function and a criticality i~ctor are required. When these parameters are 
available, the proposed method constructs effective schedules for repetitive tasks that yield acceptable intermedi- 
ate results; in addition, these schedules tend to degrade gracefully under "heavy" load conditions. A three-phase 
process is proposed: first a balanced allocation of tasks is attempted using the rate-monotone first-fit algorithm; 
then the schedule for each processing duster is constructed by using a linear programming formulation of the 
task system. This formulation considers many important parameters not considered by previous approaches, and 
constitutes the proposed improvement over previous work. Finally, the schedule for the entire system is derived 
from the partial schedules. 

1. ~ T R O D U C T I O N  

In designing a CASE tool that supports the 
interactive specification and prototyping of dis- 
tributed real-time applications [4], the problem 
of optimizing the execution of periodic real-time 
tasks which are scheduled on nmltiprocessors 
came up. Applications of this kind (for exam- 
ple, real-time s~gnai processing, real-time deci- 
sion support etc) impose large processing require- 
ments. Furthermore, since the tasks of these ap- 
plications must be executed repetitively within a 
certain time limit, intermediate imprecise results 
are produced. 

In this paper, a new approach to solve this 
problem is presented, which differs from tradi- 
tional ones in that it tries to avoid timing fault- 
s by allowing the return of intermediate result- 
s of acceptable (though not optimal) quality. 
This method resulted f~om the application of the 
methodology presented in [4, 5] to scheduling. 
Prerequisites for its application are the availabil- 
ity for every task T/ of the probability density 
function fx ,  (~) that describes its execution time, 

of a value function V(Ti, t) that gives the earned 
value from allocating t time units to T/ and al- 
so of a criticality factor ~ .  When this informa- 
tion is available the proposed method produces 
effective schedules which in addition tend to de- 
grade gracefully under heavy load conditions. It 
is important to note that the static nature of the 
periodic tasks allows extensive (off-line) optimiza- 
tions to be performed, a property that suits our 
C a s e .  

Related work in this field [2] considers only the 
criticalities of some task, which are represented 
with the use of weights. Our work considers in 
addition to the task criticalities: 

• the slope of the probability distribution 
curve, which expresses the benefits f~om al- 
locating additional time to the task, and 

• value functions, which express the impor- 
tance of better results for a task; this factor 
clearly depends upon the role of the task in 
the particular application. 

In the next section, a formulation of the 
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scheduling problem is given together with a mod- 
el of the system where the tasks will be executed. 
Then the proposed solution is described. 

2. M O D E L I N G  T H E  P R O B L E M  

Let us assume that there axe N real-time 
tasks (Tt ,T2, . . . ,  TN) running at a tightly cou- 
pled shared memory multiprocessor system which 
consists of M processing dusters interconnected 
by a high-speed bus [8]. In addition, each pro- 
cessing duster includes a tightly coupled shared- 
memory multiprocessor with me processors. Due 
to the large and usually non-deterministic over- 
heads associated with task migrations, the tasks 
axe executed only at the processing dusters on 
which they were initially loaded. The existence, 
however, of fast hardware support for context 
switch operations and of a versatile mechanism 
by which one processor can continue a task left 
by another after locating it in shared memory, can 
make the preemption overheads very low even if 
the task is restarted on another processor (of the 
same duster).  This low overhead permits the use 
of preemptive scheduling. Note however that a 
task cmanot be in execution in more than one pro- 
cessors at the same time. 

For each task T/, its ready time tr, (the time 
where the task is ready for execution) and it- 
s deadline td, (the time where execution of the 
task must terminate) are defined. Then, the 
feasibility interval of the task is the time be- 
tween its ready time and its deadline. Denote 
by Pi, i = 1, 2 , . . . ,  N the periods of the N peri- 
odic tasks. After a time interval equal to the least 
common multiple S of all the tasks, all of them 
axe invoked again and the order of invocations in 
It, +S , t ,  +2.S 1 is the same as in [ t , , t ,+S] ,  where 
t ,  is the start #me, that is the time of the first 
invocation. A planning cycle [6] is defined as any 
interval of the form It8 +i-S ,  ts + i . S +  S),  i E N.  
In figure 1, three tasks (T1, T2, Ta) axe depicted, 
with periods 30, 20 and 10 time units, respec- 
tively. The planning cycle is 60 time units, and 
contains six instances of T1, three instances of T2 
and two instances of T1 (namely, T l l  and T1.2). 

To solve the scheduling problem we must find 
for each processor i, i = 1,2, . . .  , M * m c  at inter- 
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Figure 1. Example of a planning cycle 

val IO, PC) (first planning cycle) a set of tuples 
S~ = (t, Tj, c) meaning that at time t, processor i 
schedules task Tj and allows time c to it (a pre- 
emptive schedule). Fltrthermore, a task can be 
scheduled only in the processing duster in which 
it is allocated. The execution times assigned to 
the task by the schedule must be within its feasi- 
bility interval. 

For each task T/ the distribution of its execu- 
tion time can be taken either by the solution of 
the appropriate formal models (e.g. Continuous 
Time Markov Chain models [4, 5]) or by perform- 
ing statistical analysis [7] of a large number of 
measurements. The f is t  method is particularly 
suitable for systems that can be modelled with 
Petri-Net or equivalent (e.g. Data-Flow Graphs) 
structures, as is the case being modeled here. The 
Probability Distribution FUnction (PDF) of the 
execution time of the task represents the proba- 
bility for the task to return a final result depend- 
ing on how long it is being executed; it can be 
defined as Pr~ = F x , ( Q )  = Pr(X~ <_ Q), where 
Ci is the computation time assigned by the sched- 
ule to task i, with execution time described by 
the random variable Xi and Pri the probabili- 
ty of completion of its execution within this time. 
Repetitive tasks, however, may converge too slow- 
ly to a final result; that is why, levels of interme- 
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Figure 2. The PDF of a task's execution time 

diate acceptable results must be defined. To rep- 
resent such levels, two probabilities are used: the 
mandatory probability Prm, and the optimized 
probability Pro., Pro, >_ Prm,. The mandatory 
probability represents a good probability to com- 
plete successfully the execution of a task instance 
or, at least, return an acceptable intermediate re- 
sult, under non-contending conditions; each task 
must be executed until its mandatory probabil- 
ity is reached. The optimized probability is the 
probability for the task to return an otpimal (fi- 
nal) result. It is -< 1 for tasks that do not con- 
verge, or converge too slowly after a long time. In 
such cases, execution of the task must stop when 
an acceptable optimal result has been produced 
(refer to figure 2). 

In actual cases, additional workload may be 
added due to several reasons (e.g sporadic task 
arrivals). In that case the scheduling policy must 
continue to allocate sufficient processing time to 
reach the mandatory probability of the task. To 
service the sporadic tasks, a fraction of the opti- 
mized probability time should be used. Depend- 
ing on the availability of processing time, the ex- 
ecution of a task may proceed in order to improve 
the probability of successful execution. Thus, the 
system continues to operate correctly as the load 
increases, but its performance degrades graceful- 

ly. When all the optimized parts have been allo- 
cated, the scheduler does not accept other jobs, 
since the mandatory times must be preserved. 

The implicit assumption that the performed 
computations are monotone (the result quality 
does not deteriorates as computation proceeds) is 
u~de. Given Prm,, Pro,, the corresponding com- 
putation times Cm, (mandatory) and Co, (opti- 
ridged) are easily derived from the PDF definition. 

The quantities Coc_maz, = C o , -  Cm,, i = 
1, 2 , . . . ,  N are the optimized computation times 
that the schedule must allocate partially (total- 
ly, if sufficient computation time exists) on the m 
processing dusters in order to optimize the quan- 
tity 

N 

E K i  " ~ ( T i , C m , + C o c , ) - V ( T i , C ~ , ) ]  (1) 
i=l  

where COG, <_ Coo_max, is the part of the task's 
Ti optimized time assigned by the schedule for ex- 
ecution. The factor Ki is dependent both on the 
task's criticality and on the slope of the task's 
PDF curve; it is of the form 7i" D +/Ci, where 7i 
is a proportionality constant that expresses the 
significance of the curve's slope for the particular 
task and/Ci expresses the task's criticality. Tasks 
with curves having fast convergence to Pro, in 
[Cm,, Co,] must be preferred since the optimized 
probability can be obtained with smaller com- 
putation time. The slope of the PDF curve is 
approximated by making approximations to the 
density fx ,  : FJc. at every k (e.g. k : 5) points 
in the interval (Cmi, Co,) starting with Cm,. That 
is 

rx ,  (ki + de) - Fx, (ki) 
fx ,  (ki) : F~, (ki) ,~ dc 

where ki is the point where the density is approxi- 
mated and dc is the distance between two consec- 
utive points at which Fx, was evaluated (clearly 
ki+l : ki + dc). Then the s u m  

D = Ej=o F'x,(C,~, + j .  k .  dc) 
n 

[ C o  -C.~, / 
(where n -- L ~ a  ) indicates the speed of the 
convergence (larger means faster convergence). 
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The expression V(T~. C.~, +Coc, ) -V  (T~, Cm,) 
expresses the benefits obtained from the alloca- 
tion of additional C o c ,  time to the task. In order 
to compute this quantity every task must be con- 
sidered separately, since it represents the value of 
each intermediate result of a task. Thus, at ev- 
ery time point the probability with which a task 
produces intermediate results and the quality of 
those results is considered. The value curves that 
obtained in this way, can be very different from 
the probability distribution ones. This is due to 
the fact that the probability distribution curve 
expresses only the probability of completion up 
to a time point and not the value of the produced 
results up to that point. 

3. P R O P O S E D  S O L U T I O N  

The problem of finding effective schedules for 
the N periodic tasks can be divided into three 
subproblems: balanced distribution of the work- 
load among the processing dusters,  optimal allo- 
cation of the available computation time on each 
processing cluster to its tasks and construction of 
the schedule on every processing duster  (i.e the 
assignment of each task's allocated time to spe- 
cific duster 's  processors). 

3.1. Work load  d i s t r ibu t ion  
For the allocation of tasks, the rate-monotone 

first-fit algorithm [3] can be used, according to 
which the task set is sorted by increasing periods 
and it is assigned to the dusters (m a first-fit ba- 
sis. A task tits (m a duster  if it and those already 
assigned to the cluster can be feasibly scheduled 
with the rate-monotone algorithm. In the deci- 
sion of whether a task fits on a duster  only its 
mandatory time is considered. If na tasks have al- 
ready been assigned to a duster  and their manda- 
tory parts have a total mandatory  utilization fac- 

n a  
tot u = ~ i=1  c,~, then the (ha + 1)th task can -'PT-, 
be assigned if u +  ¢ ' ~ + '  < (ha + 1 ) ( 2 ~ - -  1), Pna + 1  - -  

where Cm. is the expectation of Xi  (Cm, = E[Xi]).  
Under this condition the existence of a feasible 
schedule is guaranteed. Since the above inequal- 
ity indicates that the mandatory utilization fac- 

tor is always less than 1 (in2 < n a ( 2 " - ~ -  1) < 
1, V na > 1) there always remains time for the 

optional parts. 

3.2. T ime  a l loca t ion  
After the task allocation is accomplished the 

schedule for each processing duster can be con- 
structed independently. That  schedule must have 
the following properties: 
a. At any time instant each processor executes at 
most one task. 
b. Each task is assigned processing time only 
within its feasibility interval. 
c. The completion of the execution of all the tasks 
at least until the points where their mandatory 
probabilities Prm, are reached must be guaran- 
teed. 
d. After the satisfaction of property (c), any re- 
maining time on the M ,  mc processors is given 
to the tasks with the larger criticality in order to 
maximize expression 1. 

PC be the number of instances Let ri = 
task i in the planning cycle. The problem of 
scheduling N periodic tasks in one planning cy- 
cle can be transformed into an equivalent one c£ 

scheduling N '  = ~N=I ri tasks in the same inter := 
vM. To do this, for every task T/, i : 1, 2 , . . . ,  N, 
each of its ri instances can be treated as a sep- 
arate task with ready time for the k'th instance, 
k.  Pi and deadline (k + 1) - Pi (feasibility interval 
[k . Pi, (k + 1) • Pi)). Denote by Ti, T~ , . . . ,  T~, 
the N '  derived tasks. The ready times of the N r 
tasks are sorted in increasing sequence. The sort- 
ed times split the planning cycle into kr(k ' < N r) 
intervals (six such intervals, I1 t o / 6  are shown in 
figure 1). 

This phase can be carried out optimally by us- 
ing a linear programming formulation. Denote by 
Cq the computation time assigned by the sched- 
tile to task T/~ in the interval j(1 < j _< k') c~ 
length Wj. A matrix C with entries Cij (which 
give the optimal processing time in each interval 
j and for every task T[) is derived in this phase, 

with E~'=I Cij = Cmi + C o c , .  This matrix does 
not describe the processor on which a task is go- 
ing to run and the exact time of its execution. 

A linear programming formulation will be used 
to find the optimal allocations. The expression 
1 nmst be maximized under the following con- 
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~raints: 

• The assigned time for every task T[ in the 
planning cycle (at all the k' intervals) must 
be less than its optimized execution time 
Co, and greater than its mandatory execu- 
tion time Cm.. 

m is the number of variables. Replacing for the 
particular problem n = 2N'  + k' + 2k' N' ,  m = 
k ' N  ~ and after simphfication, a complexity of 
O(k '3N '3) can be obtained for the particular 
problem. 

~:J 1¢1 

?2c ,  j <_Co, and ?2c ,  
j----1 j----1 

i =  1, 2 , . . . , N '  

• Each task is assigned processing time only 
within its feasibihty interval. Thus, Ci~ = 0 
for each interval of T',  i = 1, 2 , . . . ,  N ' .  

• The assigned processing time by the sched- 
ule on each interval must not be greater 
than the time available at that interval on 
all the processing dements  of the cluster, 

?Tt, c 

i I 

-Wj  > ~ _ C i j ,  j = 1 , . . .  , k '  
i = 1  

Note that the schedule is constructed for 
each duster  separately. 

Each task is assigned on at most one pro- 
cessor at any time, 

0 < < wj ,  (2) 

where j = 1 . . . .  ,k ~, i = 1 . . . .  ,N ' .  Actu- 
ally, the above constraints ensure that the 
allocated time to every task, at every inter- 
val can be fullfilled by servicing it with a 
single processor at a time (not necessarily 
the same). 

By solving the above linear program the opti- 
mal Ci~ entries are obtained. In order to prevent 
implementation problems, these are rounded to 
the largest integer. 

The complexity of one efficient algorithm for 
 near programming [1] is + re)m2 + + 
m) 1 5 m) where n is the number of inequalities and 

3.3. Schedule Construct ion  
During the time allocation phase the parame- 

ters Cij for the optimal processing times in each 
interval j and for every task T[ are derived and 
are rounded appropriately. The purpose of this 
phase is to construct the schedule by assigning 
these times to specific processors. Clearly, in the 
considered case of serial tasks the assignment of 
the same task on more than one processor at the 
same time must be avoided. 

This phase constructs the final schedules for 
each of the k I intervals separately. Consider the 
interval Ij of length Wj (all the others are treated 
similarly). Let TI1, T'2, " • , T~ be the k of the N'  
tasks that are allocated non-zero execution time 
Ci~, i = 1, 2 , . . . ,  k in the Ij interval (the tenure- 
bering of the tasks does not affect the generality 
of the approach). Clearly, Cij < Wj (by the con- 
straint expressed with equation 2). 

Two cases can now be considered. The first one 
is when k < me. This case is trivial since we can 
assign each task for execution on its own proces- 
sor. In order to treat the other ease (me < k) 
we use a simple and efficient heuristic. Although 
this heuristic does not yield optimal schedules, its 
complexity is linear with the number of tasks and 
it yields at most one preemption for each task. 
This heuristic works as follows (for a wj interval): 
Let the tasks be numbered T~, T~ , . . . ,  T~ and the 
processors Pl,P2, . . . ,Prec.  Assign task 7~ to Pl- 
Task T~ continues from the point T~ ended and in 
the case that it does not fit in Pl the remaining 
time is allocated starting from the start of Wj 
at P2- Since Cij < Wj, V i, V j ,  (from equa- 
tion 2) overlap of execution on two processors at 
the same time is guarranted to be avoided. Fur- 
ther, since all the available time on the processors 
is used and by the time allocation phase we have 
me" Wj > ~~.k Cij the construction of the schedule 
by the heuristic is guaranteed. 
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4.  C O N C L U S I O N S  A N D  F U T U R E  W O R K  

We have presented a three-phase process for the 
construction of effective multiprocessor schedules 
for repetitive real-time tasks. That process con- 
siders a wide range of important parameters in 
order to construct those schedules. Specifically, 
it considers for every task its criticahty, the dis- 
tribution of its execution time, the value it has 
for a particular application and the precedence 
constraints between the tasks. During the first 
phase the rate-monotone first-fit algorithm is ap- 
plied. The second phase is carried out optimally 
by using a linear programming formulation, while 
for the third phase, the application of a new al- 
gorithm is proposed. 

In the future, attempts to make any possible 
improvements at these phases will be made. Then 
the process will be applied to the construction of 
effective schedules during the design and produc- 
tion of distributed real-time applications com- 
posed of repetitive tasks (e.g transportation of 
large multimedia objects between the nodes of a 
distributed authoring system). 
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